Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shashidhar, ${ }^{\text {a }}$ Vijay

Thiruvenkatam, ${ }^{\text {b }}$
S. A. Shivashankar, ${ }^{\text {a }}$ M. B. Halli ${ }^{\text {c }}$ and T. N. Guru Row ${ }^{\text {b* }}$
${ }^{\text {a }}$ Materials Research Centre, Indian Institute of Science, Bangalore 560 012, Karnataka, India, ${ }^{\mathbf{b}}$ Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ${ }^{\text {c }}$ Department of Chemistry, Gulbarga University, Gulbarga 585106, Karnataka, India

Correspondence e-mail:
ssctng@sscu.iisc.ernet.in

Key indicators

Single-crystal X-ray study
$T=290 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.054$
$w R$ factor $=0.127$
Data-to-parameter ratio $=12.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

1,3-Bis(4-methoxyphenyl)thiourea

In the crystal structure of the title compound, $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, the The $\mathrm{C}=\mathrm{S}$ group lies on a mirror plane. The molecules are packed in a centrosymmetric manner through intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds.

Comment

Compounds containing the thiourea unit show strong antifungal and antibacterial activity and find applications in medicine and agriculture (Lin et al., 2004). The title compound, (I), crystallized in the space group Pnma with $Z=$ 4. The $\mathrm{C}=\mathrm{S}$ group lies on a mirror plane and thus there is one half-molecule in the asymmetric unit.

The molecule of (I) is shown in Fig. 1 and a packing diagram is shown in Fig. 2. The dihedral angle between the planes formed by $\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{S} 1$ and $\mathrm{C} 2-\mathrm{C} 7$ is $90.26(1)^{\circ}$, resulting in a bent 'butterfly-like' molecular shape. The molecules are arranged parallel to each other and extend along the long b axis via purely due to purely van der Waals interactions. Two well defined $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds involving the S atom lying on the mirror plane generate the packing motif in the ac plane $[\mathrm{N}-\mathrm{H} \cdots \mathrm{S}: \mathrm{N} \cdots \mathrm{S}=3.551$ (3) \AA]. As a result, alternate molecules generated by the glide planes are held perpendicular to each other, as shown in Fig. 2.

Experimental

To a solution of p-anisidine (37 g), carbon disulfide (24 ml) and rectified spirit (40 ml) kept at $283-287 \mathrm{~K}$, a small amount of aqueous ammonia (41 ml) was added, accompained by constant shaking. The intermediate thiocarbamate was recovered and washed with small amounts of diethyl ether. It was subjected to steam distillation after adding lead nitrate and water. The compound which separated was further distilled and crystallized. The NMR data for the compound have been reported previously (Natarajan et al., 2005).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} \\
& M_{r}=288.37 \\
& \text { Orthorrombic, } \text { Pnma } \\
& a=8.427(5) \AA \\
& b=31.628(19) \AA \\
& c=5.292(3) \AA \\
& V=1410.3(14) \AA^{3} \\
& Z=4 \\
& D_{x}=1.358 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Figure 1
View of the molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (a) $x, \frac{1}{2}-y, z$.]

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.903, T_{\text {max }}=0.923$
11344 measured reflections
1572 independent reflections
1433 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=27.4^{\circ}$
$h=-10 \rightarrow 10$
$k=-40 \rightarrow 39$
$l=-6 \rightarrow 6$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0502 P)^{2} \\
&+0.7475 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.127$
$S=1.21$
1572 reflections
126 parameters
All H -atom parameters refined

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{S} 1-\mathrm{C} 1$	$1.693(3)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.339(2)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.375(3)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.431(3)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.417(4)$		
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 8$	$117.5(2)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.41(19)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$124.68(18)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 7$	$120.56(18)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 1^{\mathrm{i}}$	$114.7(2)$	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6$	$124.4(2)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	$122.66(12)$	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	$115.5(2)$

Symmetry code: (i) $x,-y+\frac{1}{2}, z$.

Table 2
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~S} 1^{\mathrm{ii}}$	$0.80(3)$	$2.79(3)$	$3.551(3)$	$160(2)$

Symmetry code: (ii) $x+\frac{1}{2},-y+\frac{1}{2},-z+\frac{1}{2}$.
All the H atoms were located and refined isotropically. The $\mathrm{C}-\mathrm{H}$ bond lengths are $0.89(3)-1.05(3) \AA$ and the $\mathrm{N}-\mathrm{H}$ bond length is 0.80 (3) A.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

Figure 2
Packing diagram of (I), viewed down the c axis. The dotted lines indicate intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds.

ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPADST programme at IISc.

References

Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Lin, Q., Zhang, Y.-M., Wei, T.-B. \& Wang, H. (2004). Acta Cryst. E60, o580o582.
Natarajan, A., Guo, Y.-H., Arthanari, H., Wagner, G., Halperin, J. A. \& Chorev, M. (2005). J. Org. Chem. 70, 6362-6368.
Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Gottingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). Chemical Crystallography Laboratory, University of Oxford, England.

